The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 4X 1 1 1 3X 1 1 1 1 1 1 1 3X 1 1 1 0 4X 1 1 1 1 2X 1 1 1 1 1 3X 1 1 1 1 1 1 1 1 1 4X 1 1 1 2X 1 1 1 1 1 1 1 3X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2X 4X 0 1 1 0 1 0 3X 2X X 1 3X+2 3X+3 3X+1 2X+1 4X+1 3X+4 2 2X+4 X+3 3 1 X+4 4X+2 1 X+3 4X+3 0 1 4 2 2X+2 1 4X+1 4X+4 4X 1 X+4 4X+4 3X+3 1 1 4X 1 3X+4 X 1 2X+4 4X+3 3 2X+2 X+2 2X X+1 X+1 3 4X 3X+3 3X+4 2 X+2 3X+1 1 4 0 2X+1 1 3X+2 2X+2 X+1 X 0 X+2 4X+4 1 2X+3 1 2X+4 X+4 2X+3 2X+3 3X+2 3X+1 3X+1 3X+4 3X+3 2X+4 2X 3 4X+1 2X+3 2X+3 4X 1 1 4X+4 4X+1 0 0 1 3X+1 2 4 X+4 3X+4 4X+4 3X+2 3X+3 X X+2 2X+2 3X X+1 4X+3 2 1 0 1 2X X+2 2X+3 X+3 X+4 2X+3 X+1 2X+4 1 4X+3 3X 3X+4 4X+4 2X 3 3X+2 3X+1 3X+4 X+3 2X+1 2 3X+3 4X+3 4X+4 4X+2 2 2X+1 1 3X X+2 X X+1 4X+1 3X+1 X+3 X+4 3 4X+4 3X+2 3X+3 4X+1 3 0 3X+2 1 4X 2X+1 3X+3 4X+2 4X 0 2X+2 4 4X+1 4 3X+1 3X+2 4X+4 2X+2 3X+4 X+1 4X+2 4 3X+4 4X+2 4X+1 2X 1 2X+2 1 3X+1 3X+4 generates a code of length 93 over Z5[X]/(X^2) who´s minimum homogenous weight is 361. Homogenous weight enumerator: w(x)=1x^0+820x^361+1320x^362+320x^363+240x^364+44x^365+1660x^366+2220x^367+420x^368+40x^369+36x^370+1220x^371+1580x^372+340x^373+60x^374+980x^376+860x^377+200x^378+60x^379+4x^380+620x^381+740x^382+100x^383+40x^384+12x^385+520x^386+600x^387+120x^388+60x^389+16x^390+180x^391+180x^392+12x^395 The gray image is a linear code over GF(5) with n=465, k=6 and d=361. This code was found by Heurico 1.16 in 0.7 seconds.